QUESTION BANK ON ENGINEERING MATHEMATICS-III

(FOR ELECTRICAL ENGINEERING BRANCH)

PREPARED BY

MRS. PADMINI PANIGRAHI

LECTURER IN MATHEMATICS,

GOVT. POLYTECHNIC NABARANGPUR

Engineering Mathematics – III Question Bank Complex Numbers

Short answer question.

- 1. Write in a+ib form $\frac{2-3i}{2+4i}$
- 2. Find the argument and modulus of the complex number 3+i5
- 3. Find the real part and imaginary part of a+ib
- 4. Find the complex conjugate of 2-8i
- 5. (2+3i)+(3-4i)=____
- 6. (5+4i)(2-5i)=____

Long answer type question

- 1. Find the square root of 2+i3
- 2. If $z = (\cos\theta + i\sin\theta)$, show that $z_n + \frac{1}{z_n} = 2\cos n\theta$ and $z_n \frac{1}{z_n} =$

 $i2 \sin n\theta$

3. If 1, w, w^2 are the cube root of unity then prove that $(1 + w - w^2)^6 + (1 + w - w^2)^6$

$$(1 - w + w^2)^6 = 128$$

4. If $1, w, w^2$ are the cube root of unity then prove that

$$(1+w)(1+w^2)(1+w^4)\dots(1+w)^{2^{11}} = 1$$

5. If $1, w, w^2$ are the cube root of unity then prove that then $(1 + w)^3 - (1 + w^2)^3 = 0$

Rank of a matrix

Short answer type questions

- 1. Define upper triangular matrix with an example.
- 2. Define row reduced echelon form of a matrix.
- 3. Define Rouche's theorm.

4. Find the rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

5. Define rank of a matrix.

Long answer type question

- 1. Solve x+2y-z=3;3x-y+2z=1;2x-2y+3z=2
- 2. For what value of γ and μ do the system of equations x+y+z=6

x+2y+3z=10 $x+2y+\gamma = \mu$

have i) no solution ii) unique solution iii) infinite solutions

3. Solve the system of linear equation.

4. Test the consistency of the linear equation 5x+3y+7z=4;

Differential Equation

Short answer type questions.

1. Define a differential equation.

2. Find the order and degree of the differential equation $\frac{dy}{dx} + x^2 = 1; \frac{d^2y}{dx^2} =$

$$\sqrt{3 + \frac{dy}{dx}}$$

3. Find the differential equation of the family of curves $y = e^x (Acosx + B sinx)$

- 4. Define homogenous differential equation with an example.
- 5. Define non-homogenous differential equation with an example.
- 6. Define linear differential equation with an example.

7. Solve
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

- 8. Solve $(D-2)^2 y = e^{2x}$
- 9. Define a partial differential equation.
- 10. Form the partial differential equation $z = ax + by + a^2 + b^2$
- 11. Form the partial differential equation $z = f(x^2 y^2)$

Long answer type question.

1. Solve
$$\frac{d^3y}{dx^3} + y = 0$$

2. Solve $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0$
3. Solve $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x = sint$
4. Solve $(D^2 - 2D + 2)y = e^x sinx$
5. Solve $(D^2 + 3d + 2)y = x^2$
6. Solve $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$
7. Solve $x(y - z)p + y(z - x)q = z(x - y)$
8. Solve $x^2(y - z)p + y^2(z - x)q = z^2(x - y)$
9. Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$

Laplace Transformation

1. Find the inverse laplace transform of $\frac{s}{(s^2+4)^2}$.

2.Find laplace Transformation of { $e^{4t} + 5$ }

3. Find laplace Transformation of $L{cos(2t) + 7 sin(2t)}$

4. Find laplace Transformation of $L(t^2 + 4t + 2)e^{3t}$

5. Find laplace Transformation of $L(6 e^{5t} \cos(2t) - e^{7t})$

6. Find laplace Transformation of $e^{5t}(cos3t)$

Numerical Methods

1.Determine the root of the given equation $x^2-3 = 0$ for $x \in [1, 2]$ by using bisection method.

2. Determine the root of the given equation $3x^2 - 5x - 2 = 0$ by using bisection method.

3. Using Bisection method find the root of $cos(x) - x \cdot e^x = 0$ with a = 0 and b = 1.

4. Determine the root of the given equation $x^2 - logx = 0$ for $x \in [1, 2]$

5.Use Newton Raphson Method to find the root of the given equation $x^3 - 7x^2 + 8x - 3 = 0$.

6.Use Newton Raphson Method to find the root of the given equation $x^3 - 3x - 5 = 0$

Finite difference and interpolation

1.Construct a forward difference table for the following data

x	0	10	20	30
у	0	0.174	0.347	0.518

2. Construct a forward difference table for $y = f(x) = x^3 + 2x + 1$ for x = 1,2,3,4,5

3. By constructing a difference table and using the second order differences as constant, find the sixth term of the series 8,12,19,29,42...

4.Find (i) Δe^{ax} (ii) $\Delta^2 e^x$ (iii) $\Delta \log x$

5.Using Newton's forward interpolation formula find the cubic polynomial.

x	0	1	2	3
f(x)	1	2	1	10

6.Find f(2.8) from the following table.

	x	0	1	2	3
Ī	f(x)	1	2	11	34

7.Using interpolation estimate the output of a factory in 1986 from the following data

Year	1974	1978	1982	1990
Output in 1000 tones	25	60	80	170

$$\int_0^{\pi} \sin x \, dx$$

9. Approximate the integral using the Trapezoidal Rule with n=2 subintervals

$$\int_0^1 x^3 dx$$

- 10. Approximate the integral of $f(x) = e^x$ on [0, 10] using the trapezoidal rule
- 11. Approximate the integral of $f(x) = x^2$ on the interval [0, 2] using the Simpson's $1/3^{rd}$ rule.
- 12. Use Simpson's Rule with n=4 to approximate the integral

$$\int_0^8 \sqrt{x} \, dx$$

Fourier Series

- 1. Explain periodic function with examples.
- 2. State Dirichlet's conditions for a function to be expanded as a Fourier series.
- 3. 10. Write the formulae for Fourier constants for f(x) in the interval (-p, p).
- 4. If $f(x)=x^2 -x^4$ is expanded as a Fourier series in (-l,l), find the value of b_n
- 5. Obtain the sine series for unity in $(0, \pi)$.
- 6. Find the Fourier series $f(x) = x + x^2$ in $(-\pi, \pi)$