LESSON PLAN FOR SUMMER SESSION (2024-25)

ROGRAM	ME : CIVIL	ENGINE	
OURSE N.	AME : STR	UCTURAL	
OURSE C	ODE: TH.1		DATE: 04/02/25 To 17/05/25
EMESTER	1:4TH		
ERIODS/V			
OTAL PE	RIODS:75		
WEEK	PERIODS	UNITS	TOPICS
	1	1	1. Working stress method (WSM):
			1.1 Objectives of design and detailing. State Different methods of design of concrete structure.
Feb. 1st	2	1	1.2 Introduction to reinforced concrete, R.C. sections their behavior,
Week	3	1	Grades of concrete and steel. Permissible stresses, assumption in W.S.M.
	4	1	1.3 Flexural design of single reinforced sections from first principles.
	5	1	Analysis of single reinforced sections from first principles.
	6	1	1.4 Concept of under reinforced,
	7	1	Concept over reinforced and balanced sections.
Feb. 2nd	8	1	1.5 Advantages and disadvantages of WSM, reasons for its obsolescence.
Week	9	1	1.5 Advantages and disadvantages of WSM, reasons for its obsolescence.
	10	2	2. Philosophy Of Limit State Method (LSM)
34910			2.1 Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy.
	11	2	2.2 Types of Limit states, partial safety factors for materials strength as per IS 875
Feb. 3rd	12	2	Characteristic strength, characteristic load, design load, loading on structure as per I.S. 875
	13	2	2.3 Study of I.S specification regarding spacing of reinforcement in slab, cover to reinforcement in slab, beam column
Week		distribution of	& footing,
	14	2	Minimum reinforcement in slab, beam & column,
10000	15	2	Lapping, anchorage, effective span for beam & slab.
THE H	16	3	3. Analysis and Design of single and Double reinforced section (LSM)
			3.1 Limit state of collapse (flexure), Assumptions,
Feb. 4th	17	3	Stress-Strain relationship for concrete and steel, neutral axis,
Week	18	3	Stress block diagram and strain diagram for singly reinforced section. 3.2 Concept of under- reinforced, over-reinforced and limiting section, neutral axis co-efficient,
1994	19	3	
	20	3	Limiting value of moment of resistance
	21	2	Monthly Test-1 Limiting percentage of steel required for limiting singly R.C. section.
Mar. 1st	22	3	3.3 Analysis and design: determination of design constants,
Week		3	Moment of resistance and area of steel for rectangular sections
1	24	3	3.4 Necessity of doubly reinforced section,
	26	3	Design of doubly reinforced rectangular section
No. of the	20	BOTTO S	4. Shear, Bond and Development Length (LSM)
Mar. 2nd	27	4	4.1 Nominal shear stress in R.C. section, design shear strength of concrete,
Week	28	4	Maximum shear stress, design of shear reinforcement,
	29	4	Minimum shear reinforcement, forms of shear reinforcement.
	30	4	4.2 Bond and types of bond, bond stress, check for bond stress,
Mar 3rd	31	4	Development length in tension and compression, anchorage value for hooks 90° bend
	32	4	Development length in tension and compression, anchorage value for hooks 90° bend
	33	4	Anchorage value for hooks 45° bend standards lapping of bars, check for development length.
Week	34	4	4.3 Numerical problems on deciding whether shear reinforcement is required or not
1000	35	4	Numrical problem on check for adequacy of the section in shear.
Mar. 4th Week	36	4	Design of shear reinforcement in beams (Explain through examples only).
	37	4	Design of Minimum shear reinforcement in beams (Explain through examples only).
	38		Internal Assessment Exam
	39	5	5. Analysis and Design of T-Beam (LSM)
1000			5.1 General features, advantages
The same	40	5	Effective width of flange as per IS: 456-2000 code provisions. 5.2 Analysis of singly reinforced T-Beam, strain diagram & Stress diagram, depth of neutral axis
Apr. 1st Week	41	5	5.2 Analysis of singly reinforced 1-Beam, strain diagram & Stress diagram, depth of neutral axis 5.2 Analysis of singly reinforced T-Beam, strain diagram & Stress diagram, depth of neutral axis
	42	5	5.2 Analysis of singly reinforced 1-Beam, strain diagram & Stress diagram, depth of neutral axis 5.2 Analysis of singly reinforced T-Beam, strain diagram & Stress diagram, depth of neutral axis
	43	5	Moment of resistance of T-beam section with neutral axis lying within the flange.
	44	5	Moment of resistance of T-beam section with neutral axis lying within the flange.
	46	5	Moment of resistance of T-beam section with neutral axis lying within the flange.
Apr. 2nd	47	5	5.3 Simple numerical problems on deciding effective flange width.
		5	5.3 Simple numerical problems on deciding effective flange width.
Week	-	3	6. Analysis and Design of Slab and Stair case (LSM)
	49	6	6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.

WEEK	PERIODS	UNITS	TOPICS
	50	6	6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.
Apr. 3rd Week	51	6	6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.
	52	6	6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear.
	53	6	6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear.
	54	6	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
	55	6	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
Apr. 4th Week	56	6	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
	57	6	6.4 Design of dog-legged staircase
	58	6	6.4 Design of dog-legged staircase
	59	6	6.5 Detailing of reinforcement in stairs spanning longitudinally
	60	6	6.5 Detailing of reinforcement in stairs spanning longitudinally
May. 1st Week	61	7	7. Design of Axially loaded columns and Footings (LSM) 7.1 Assumptions in limit state of collapse- compression.
	62	7	7.1 Assumptions in limit state of collapse- compression.
	63	7	7.2 Definition and classification of columns, effective length of column. Specification for minimum reinforcement, cover, maximum reinforcement,
	64	7	7.2 Definition and classification of columns, effective length of column. Specification for minimum reinforcement, cover, maximum reinforcement,
	65	7	7.2 Definition and classification of columns, effective length of column. Specification for minimum reinforcement; cover, maximum reinforcement,
May. 2nd Week	66	7	Number of bars in rectangular, square and circular sections, diameter and spacing of lateral ties.
	67	7	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	68	7	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	69	7	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	70	7	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
May. 3rd Week	71	7	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	72		Monthly Test-2
	73		Doubt Clearing Class & Previous year question Paper discussion.
	74		Doubt Clearing Class & Previous year question Paper discussion.
	75	THE PERSON NAMED IN	Doubt Clearing Class & Previous year question Paper discussion.

HOD Civil engineering

Academic Coordinator GP Nabarangpur

Principal GP Nabarangpur