		N PLAN FOR Digital Electronics & Microprocessor (Th3)
Discipline Electrical Engineerin	Semest	
Subject: Digital Electronics Microproce		Semester start From Date: 15.09.2022 to Date: 22.12.2022 No. of Weeks: 13
Week	Class	Day 3655101: 2022-23
		Ineory
	1st	1. BASICS OF DIGITAL ELECTRONICS
	2-1	Introduction to course content
1st	2nd	1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.
	3rd	
	4th	1.2 Binary addition, subtraction, Multiplication and Division.
	5th	1.3 1's complement and 2's complement numbers for a binary number. 1.4 Subtraction of binary numbers in 2's complement method.
	1st	number & write Binary equivalent number for a number in 8421, Excess-3
	2nd	1.5 Use of weighted and Un-weighted codes & write Binary equivalent number & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa.
	3rd	1.6 Importance of parity Bit.
21	4th	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EV, OR and
2nd	5th	
	1st	1.5 Officient postulates and De-Morgan's theorems in De-L
	2nd	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression.
	3rd	Expression Using K-Map.(contd.)
	4th	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.(contd.)
3rd	5th	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.
	1ct	2. COMBINATIONAL LOGIC CIRCUITS
	1st	2.1 Give the concept of combinational logic circuits
4th	2nd 3rd	2.2 Half adder circuit and verify its functionality using truth and to
4(1)		2.3 Realize a Half-adder using NAND gates only and NOR gates
	4th	2.41 diraction and explain its operation with truth table
5 th	5th	table
э	1st	2.6 Full subtractor circuit.and explain its operation with truth table.

5th		
	2nd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer.
	3rd	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.
	4th	2.9 Working of Two bit magnitude comparator.
	5th	Question answer session.
		3. SEQUENTIAL LOGIC CIRCUITS
	1st	3.1 Give the idea of Sequential logic circuits.
	2nd	3.2 State the necessity of clock and give the concept of level clocking and edge triggering,
	3rd	3.3 Clocked SR flip flop with preset and clear inputs.
	4th	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
6th	5th	3.6 Concept of race around condition and study of master slave JK flip flop
7 th	1st	3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.
	2nd	3.8 Applications of flip flops.
T	3rd	3.9 Define modulus of a counter
	4th	3.10 4-bit asynchronous counter and its timing diagram.
	5th	3.11 Asynchronous decade counter.
	1st	3.12 4-bit synchronous counter.
	2nd	3.13 Distinguish between synchronous and asynchronous counters.
	3rd	3.14 State the need for a Register and list the four types of registers.
	4th	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.
8th	5th	Question answer session.
		4. 8085 MICROPROCESSOR
	1st	4.1 Introduction to Microprocessors, Microcomputers
	2nd	4.2 Architecture of Intel 8085A Microprocessor and description of each bloc
	3rd	4.3 Pin diagram and description.
	4th	4.4 Stack, Stack pointer & stack top
9th	5th	4.5 Interrupts
	1st	4.6 Opcode & Operand,
10th	2nd	4.7 Differentiate between one byte two byte & three byte instruction with example.
Į O	3rd	4.8 Instruction set of 8085 example
	4th	4.9 Addressing mode(cont.)
	5th	4.9 Addressing mode
·	1st	4 .10 Fetch Cycle, (cont.)
	2nd	Machine Cycle, Instruction Cycle, T-State.
	3rd	4.11 Timing Diagram for momony residence
	4th	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write. 4.12 Timing Diagram for 8085 instruction
11th	5th	4.13 Country and time and time
T T (1)		1 4-13 Counter and time delay.

12th	2nđ	4. 14 Simple assembly language programming of 8085.
•		5. INTERFACING AND SUPPORT CHIPS
	3rd	5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping.
	4th	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255 (cont)
	5th	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255.
	1st	5.3 Application using 8255:
	2nd	Seven segment LED display.
:	3rd	Square wave generator.
	4th	Traffic light Controller.
13th	5th	class test-2

HODY 109 12,22 Electrical Engg