LESSON PLAN FOR ENERGY CONVERSION – II (Th.- 2)

Discipline: Electrical Engineering	Semester: 5th	Name of the Teaching Faculty: CHANDRAMANI MAHAPATRA (Lect.)
Subject: ENERGY CONVERSION - II	No. of days/ per week class allotted: 4	Semester From Date: 15.09.2022 to Date: 22.12.2022 No. of Weeks: 13
Week	Class Day	Theory
		1. ALTERNATOR:
14	lst	1.1. Types of alternator and their constructional features
	2md	Basic working principle of alternator and the relation between speed and frequency.
	3rd	1.3. Terminology in armature winding and expressions for winding factors (Pitch factor Distribution factor).
	4th	1.4. Explain harmonics, its causes and impact on winding factor.
2nd	1st	1.5. E.M.F equation of alternator. (Solve numerical problems).
	2nd	1.6. Explain Armature reaction and its effect on emf at different power factor of load.
	3rd	1.7. The vector diagram of loaded alternator.
	4th	1.7. The vector diagram of loaded alternator. (Solve numerical problems)
3rd	1st	1.8. Testing of alternator, 1.8.1. Open circuit test, 1.8.2. Short circuit test.
	2nd	1.8. Testing of alternator (Solve numerical problems)
	3rd	1.9. Determination of voltage regulation of Alternator by direct loading and synchronous impedance method.
	4th	Determination of voltage regulation of Alternator by direct loading and synchronous impedance method. (Solve numerical problems)
420	1st	1.10. Parallel operation of alternator using synchro-scope and dark & bright lamp method.
	2nd	1.11. Explain distribution of load by parallel connected alternators.
	2.10	2. SYNCHRONOUS MOTOR:
	3rd	2.1. Constructional feature of Synchronous Motor.
		2.2. Principles of operation, concept of load angle
	4th	2.3. Derive torque, power developed.
5=4	1st	2.4. Effect of varying load with constant excitation.
Sth	2nd	2.5. Effect of varying excitation with constant load.
	3rd	2.6. Power angle characteristics of cylindrical rotor motor.
	*	Explain effect of excitation on Armature current and power factor
	4th	2.8. Hunting in Synchronous Motor.
16th	1st 2nd	2.9. Function of Damper Bars in synchronous motor and generator.
		2.10. Describe method of starting of Synchronous motor.
		2.11. State application of synchronous motor.
24 21 21		3. THREE PHASE INDUCTION MOTOR:
	Desi	3.1. Production of rotating magnetic field.
	3rd	
74	4th	3.2. Constructional feature of Squirrel cage and Slip ring induction motors.
7th	1st	3.3. Working principles of operation of 3-phase Induction motor.
	2nd	3.4. Define slip speed, slip and establish the relation of slip with rotor quantities.
	3rd	3.5. Derive expression for torque during starting and running conditions and derive conditions for maximum torque.
	4th	3.5. Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems)

8th	1st	3.6. Torque-slip characteristics.
	2nd	3.6. Torque-slip characteristics. 3.7. Derive relation between full load torque and starting torque etc. (solve numerical problems)
	3rd	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque
	4th	3.9. Methods of starting and different types of starters used for three phase induction
9th	1st	3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole changing
	2nd	3.11. Plugging as applicable to three phase induction motor.3.12. Describe different types of motor enclosures.
	3rd	3.13. Explain principle of Induction Generator and state its applications.
	010	4. SINGLE PHASE INDUCTION MOTOR:
	4th	4.1. Explain Ferrari's principle. 4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor.
10th	1st	4.3. Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors. 4.3.1. Split phase motor.
	2nd	4.3.2. Capacitor Start motor, 4.3.3. Capacitor start, capacitor run motor.
	3rd	4.3.4. Permanent capacitor type motor, 4.3.5. Shaded pole motor.
	4th	4.4. Explain the method to change the direction of rotation of above motors.
		5. COMMUTATOR MOTORS:
11th	1st	5.1. Construction, working principle, running characteristic and application of single phase series motor.
	2nd	5.1. Construction, working principle, running characteristic and application of single phase series motor.(cont.)
	3rd	5.2. Construction, working principle and application of Universal motors.
	4th	5.3. Working principle of Repulsion start Motor
12th	1st	5.3. Working principle of Repulsion start Induction run motor, Repulsion Induction motor.
		6. SPECIAL ELECTRICAL MACHINE:
	2nd	6.1. Principle of Stepper motor, 6.2. Classification of Stepper motor.
	3rd	6.3. Principle of variable reluctant stepper motor.6.4. Principle of Permanent magnet stepper motor.
	4th	6.5. Principle of hybrid stepper motor.6.6. Applications of Stepper motor.
		7. THREE PHASE TRANSFORMERS:
13th	1st	7.1. Explain Grouping of winding, Advantages.
	2nd	7.2. Explain parallel operation of the three phase transformers.
	3rd	7.3. Explain tap changer (On load tap changing)7.3. Explain tap changer (Off load tap changing)
	4th	7.4. Maintenance Schedule of Power Transformers.

Head of Department

Academic coordinates 122

Contract 122