Discipline: Electrical Engineering	Semester:5th	Name of the Teaching Faculty: CHANDRAMANI MAHAPATRA, Lecturer
Subject UTILIZATION	Numbers of	Semester from date: 01.08.2023 To date:30.11.2023
OF ELECTRICAL	classes per	Schlester Holli date: California
ENERGY & TRACTION	week:4	No. of weeks: 15 Session: 2023-24
week	Class day	Theory
1st	1st	1. ELECTROLYTIC PROCESS:
		1.1. Definition and Basic principle of Electro Deposition.
	2nd	1.2. Important terms regarding electrolysis.
	3rd	1.3. Faradays Laws of Electrolysis
	4th	1.3. Faradays Laws of Electrolysis(contd.)
		1.4. Definitions of current efficiency, Energy efficiency.
2nd	1st	1.5. Principle of Electro Deposition.
	2nd	1.6. Factors affecting the amount of Electro Deposition.
	3rd	1.7. Factors governing the electro deposition.
	AAL	1.8. State simple example of extraction of metals
24	4th	1.9. Application of Electrolysis. 2. ELECTRICAL HEATING:
3rd	1st	2.1. Advantages of electrical heating.
	2nd	2.2. Mode of heat transfer and Stephen's Law.
	3rd	2.3. Principle of Resistance heating. (Direct resistance and
	Siu	indirect resistance heating.)
	4th	2.4. Discuss working principle of direct arc furnace and
	401	indirect arc furnace.
4th	1st	2.5. Principle of Induction heating.
401	130	2.5.1. Working principle of direct core type, vertical core
		type and indirect core type Induction furnace.
	2nd	2.5.2. Principle of coreless induction furnace and skin effect.
	3rd	2.6. Principle of dielectric heating and its application.
	4th	2.7. Principle of Microwave heating and its application.
5th	1st	3. PRINCIPLES OF ARC WELDING:
		3.1. Explain principle of arc welding.
	2nd	3.2. Discuss D. C. & A. C. Arc phenomena.
	3rd	3.3. D.C. & A. C. arc welding plants of single and multi-
		operation type.
	4th	3.4. Types of arc welding.
6th	1st	3.4. Types of arc welding.(contd.)
	2nd	3.5. Explain principles of resistance welding
	3rd	3.6. Descriptive study of different resistance welding
		methods.
	4th	3.6. Descriptive study of different resistance welding
		methods. (contd.)
7th	1st	4. ILLUMINATION:
		4.1. Nature of Radiation and its spectrum.
	2nd	4.2. Terms used in Illuminations. [Lumen, Luminous
		intensity, Intensity of illumination, MHCP, MSCP, MHSCP,
		Solid angle, Brightness, Luminous efficiency.]
	3rd	4.3. Explain the inverse square law and the cosine law.
OAL	4th	4.4. Explain polar curves.
8th	1st	4.5. Describe light distribution and control. Explain related
		definitions like maintenance factor and depreciation
		factors.

	2nd	4.6. Design simple lighting schemes and depreciation factor.
	3rd	4.7. Constructional feature and working of Filament lamps,
		effect of variation of voltage on working of filament lamps.
	4th	4.8. Explain Discharge lamps.
9th	1st	4.9. State Basic idea about excitation in gas discharge
		lamps.
	2nd	4.10. State constructional factures and operation of
		Fluorescent lamp. (PL and PLL Lamps)
	3rd	4.11. Sodium vapor lamps.
		4.12. High pressure mercury vapor lamps.
	4th	4.13. Neon sign lamps.
		4.14. High lumen output & low consumption fluorescent
		lamps.
10th	1st	5. INDUSTRIAL DRIVES:
		5.1. State group and individual drive.
		5.2. Method of choice of electric drives.
	2nd	5.3. Explain starting and running characteristics of DC and
		AC motor.
	3rd	5.3. Explain starting and running characteristics of DC and
		AC motor.(contd.)
	4th	5.4. State Application of:
		5.4.1. DC motor.
11th	1st	5.4.2. 3-phase induction motor
	2nd	5.4.3. 3 phase synchronous motors.
	3rd	5.4.4. Single phase induction, series motor, universal motor
		and repulsion motor.
	4th	5.4.4. Single phase induction, series motor, universal motor
		and repulsion motor. (contd.)
12th	1st	6. ELECTRIC TRACTION:
		6.1. Explain system of traction.
	2nd	6.2. System of Track electrification.
	3rd	6.3. Running Characteristics of DC and AC traction motor
	4th	6.3. Running Characteristics of DC and AC traction
13th	1st	motor(contd.)
13th		6.4. Explain control of motor:
	2nd	6.4.1. Tapped field control.
	3rd	6.4.2. Rheostat control.
	4th	6.4.3. Series parallel control.
14th	1st	6.4.4. Multi-unit control.
	2nd	6.4.5. Metaldyne control
	3rd	6.5. Explain Braking of the following types:
	4th	6.5.1. Regenerative Braking.
15th	1st	6.5.1. Regenerative Braking.(contd.)
	2nd	6.5.2 Braking with 1 phose series as
	3rd	6.5.2. Braking with 1-phase series motor.
		6.5.2. Braking with 1-phase series motor.(contd.)
	4th	6.5.3. Magnetic Braking.

HOD Electrical Engg.

Academic Co-ordinator3

Govt. polytechnic Naparangapuk